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Projects Studied Under the Contract 

During the first half of the present contract year, the program 

initiated or continued the following studies:   Speech analysis by linear 
prediction, reconstruction of multidimensional signals from  pro- 

jections,  applications of digital frequency warping, and development 

of a digital speech synthesizer.   A review was also made ot design 

and synthesis of digital filters within the constraints of finite regis- 

ter length.    These projects are summarized in the following pages. 

Reprints of available publications are appended. 
The views and conclusions contained in this document are those of 

the authors and should not be interpreted as necessarily representing 

the official policies,  either expressed or implied, of the Advanced Re. 

search Projects Agency or the U. S. Government. 



1. Speech Analysis by Linear Prediction 

Recently, the analysis of speech by means of a technique referred to 

as linear prediction has received considerable attention.   This technique 

is directed toward modeling a sequence as the output of an all-pole digital 

filter.   The work carried out under this research contract is directed toward 
applying the techniques of linear prediction to the extraction of  param- 

eters for automatic speech recognition.    Furthermore, we are at present 

investigating a number of alternative formulations of the technique together 

with some of the theoretical limitations. 
A portion of the work relating to the extraction of parameters fcr speech 

recognition is being carried out on the fast digital processor facility   at 
Lincoln Laboratory.    The system implemented is capable of performing 

the analysis in real time,  and effort is now directed towardjthe evaluation 

of its performance.    Thus far the results are encouraging, indicating that 

with the use of linear prediction good speech parameter data can  be 

extracted.    This aspect of the work is reported in detail by V.   W.   Zue, 

Quarterly Progress Report No.  105,   Research Laboratory of Electronics, 

M.I.T., April 1972,  pp.  133-142. 
A second aspect ot this work relates to some possible theoretical short- 

comings of the technique.   In particular, it has been shown that in certain 

situations it is possible for the linear prediction technique to generate 

approximations to the speech spectrum with large errors.    These results, 

and a comparison of a number of formulations of the linear prediction 

technique, have been summarized by M. R.  Portnoff, V. W. Zue and 
A. V.  Oppenheim in Quarterly Progress Report No.   106,   Research Lab- 

oratory of Electronics,   M. I. T., July 1972,  pp.  141-150. 
Based on the results obtained so far, the linear prediction technique 

for speech analysis appears to be extremely promising, but it hr.s some 

theoretical pitfalls.    Research under this contract on these problems is 

continuing. 

2. Reconstruction of Multidimensional Signals from Projection 

In a variety of contexts, projections of multidimensional signals are  ^ 

available, and a reconstruction of the original signal is desired.    The basis 



for the technique is that the Fourier transform of the projection of a sig- 

nal can be shown to be a slice through the Fourier transform of the orig- 

inal signal.    The problem of reconstructing multidimensional signals 

from their projections is encountered naturally in a variety of contexts 

including x-ray photographs and electron micrography.    The purpose 

of the present research is to formulate the reconstruction problem entirely 

in terms of discrete signals.    We approached the problem from this point 

of view,  and have obtained some particularly interesting results.    It has 

been shown that it is possible under relatively mild assumptions to com- 

pletely define a multidimensional signal in terms of a single one- 

dimensional projection.    In addition, a number of algorithms have been 

devised for reconstructing multidimensional signals from a small num- 

ber of projections.    These results have potential application to a number 

of problems.    The possibility is suggested that bandwidth compression of 

multidimensional signals can be accomplished by coding in terms of pro- 

jection.    Furthermore, the use of projections to describe a multidimen- 

sional signal appears to hold some promise for carrying out the design 

of multidimensional filters.    The theoretical basis for these algorithms 

and some examples are described by R,   M.   Mersereau in Quarterly 

Progress Report No. 105, April 1972, Research Laboratory of Electronics, 
M. I. T., pp.  169-183. 

3.   Applications of Digital Frequency Warping 

Recently,  a technique was proposed for processing a signal in such a 

way as to implement a nonlinear distortion in the frequency axis.     We 

are investigating application of   this digital frequency warping to a num- 

ber of problems,  particularly the implementation of unequal resolution 

spectrum analysis.    We have been investigating the approximation to con- 

stant percentage bandwidth that can be achieved using this technique in 

conjunction with the fast Fourier transform algorithm.    We have   also 

been investigating the application of this technique to Vernier spectrum 

analysis.    If small errors are allowable,   it is possible to use digital 

frequency warping for approximately constant percentage bandwidth fre- 

quency analysis,  and it appears that the technique will be applicable to 



Vernier spectrum analysis.    The need for both unequal resolution and 

Vernier spectral analysis arises in a variety of contexts, including radar 

and sonar processing.    We anticipate that the present research will have 

application to those problems.    The details of the technique and some pre- 

hrmnary results are described by A.  V.  Oppenheim and D. H. Johnson in 

Discrete Representation of Signals."  Proc. IEEE    60. 681-691 (1972). 

4.   Development of a Digital Speech Synthesizer 

We are working on the design and fabrication of a small, fast.inexpen- 
sxve digital processor to be used primarily for speech synthesis, but with 

application to more general signal-processing tasks.    At present    a 
detailed design of this processor has been made and hardware con- 

struction will begin shortly.   A central component of the processor is a 

new high-speed multiplier that has been designed with partial support 

from this contract.    This multiplier is described by J.   Allen and E   R 

Jensen in Quarterly Progress Report No.  105.  Research Laboratory of' 
Electronics.  M. I. T.. April 1972, pp.  147-152. 

The synthesizer,  when completed, will be connected to the PDP-9 

computer.    It will operate as a real-time synthesizer and will play an 

important role in a number of future research projects including speech 

bandwidth compression,  speech analysis,  and speech synthesis by   rule. 

5.    Design and Synthesis of Digital Filters within the Constraints 
of Finite Register  Length 

Although in most cases the design of design of digital filters is 
carried out without regard to finite register length,   they must be 

implemented with finite register length.    The effects of finite register 

length manifest themselves in a number of ways,   including parameter 

inaccuracies and truncation or rounding after arithmetic operations 

Recently,  a review of these effects was carried out.     These results 

are discussed in detail in an invited paper by A.  Oppenheim and C 

Weinstein entitled "Effects of finite   register length in digital filtering 

and the fast Fourier  transform" published in Proc.   IEEE 60    (1972) 

During  the coming year,   new research on these effects and the synthesis ' 
of digital filters will be pursued. 
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A.    NEW  HIGH-SPEED  MULTIPLIER  DESIGN 

With the advent of MSI and LSI integrated circuit technology, there is no doubt that 

digital multipliers of very high speed can be achieved, once it is  agreed what should 

be incorporated in these chips.     In the meantime, we can achieve a very fast design by 

simultaneously exploiting the mathematical structure of binary two's-complement mul- 

tiplication and existing MSI circuits which can be adapted in a natural way to the struc- 

ture of this task.  Accordingly, we shall show that the expression for binary multiplication 

can be rewritten to suggest use of the 74181 Arithmetic Logic Unit (ALU) in a straight- 

forward way that achieves high speed,  simple layout,   and very little logic  external to 

the ALU  array. 

In order to display the desired structure of multiplication,  we shall consider the 

multiplication of two 4-bit two's-complement numbers. Let each such number be repre- 

sented  as 

This   work   was   supported   by  the   National   Institutes   of   Health (Grant  5  POI 
GM14940-05),   and by the Joint Services  Electronics Programs  (U.S.   Army,   U.S. 
Navy,  and U. S.  Air Force) under Contract  DAAB07-71-C-0300). 

QPR No.   105 147 



(XI.    COGNITIVE INFORMATION PROCESSING) 

Z B Z3Z2Vo = "23z3 + 22z2 + Zlzl + 20z
0. 

where each ., is either 1 or 0. so that the product of two ,uch numbers is 

XY =  26> 
3^3 - 25(x3y2+x2y3, + 24(-x3yi+x2y2-xiy3) 

+ 2 (-X3yo+x2y1+xiy2-xoy3) 

+ 22(x
2y0

+xiyi+xoy2)+ 2l<xiyo+W+ 20Vo- 

This sum is commonly arranged in an array in which each column contains factors of 

like powers of 2,   as in Fig. XI-l.     The factors   can   be   further   rearranged,   as 

+*3y3 

"Vo + Vo + xiyo + Vo 

-x3yj + xgy, + X]y] + Xoyi 

-*3yz  + x2y2  +  x]y2  +  x0y2 

x2y3  - xIy3  -  x0y3 

Fig. XI-l.    Array representation of two's -complement multiplicati ation. 

f 

^^o xiyo xoyo 

+ . 

Vz xiy2 

Vi 

^^2 

xoyi 

*3y2     *3y1     x3y3 

X2y3      xiy3      V3 

Fig. XI-2.    Multiplication array,  grouped in positive and negative terms. 

QPR No.   105 
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(XI.    COGNITIVE INFORMATION PROCESSING) 

shown in Pig. XN2, in urder to group positive and negative term*.   At this •tag«* "ch 
row has a constant factor for each term such as y   for the top row. and those can be 

factored out as bits that control the conditional inclusion of a given row in the final sum. 
Thus,   in Fig.   XI-3,   the top row (x2 Xj xo) will be added into the sum just in CSM 

yo « 1.   and similarly for the other rows.     Figure XI-J also shows 6 conditions! 

ter-ns to be summed,   but one of these.   »^Vy   affects only the most significant bit 
position.    If this term is included in any other row (say    row 6),   the only chsnge 

{ 

NUMBER CONDITION 

•? 
»! 

«0 % 

»2 »1 »0 »i 

H Ri *0 

»5 

*       ^i »o "s 

*2           «i 'C »» 

Fig. XI-3.    Multiplication array,  grouped by rows and their respective 
control bits. 

(«A * •)    ♦    C)        -        (0 t I» 

izt-i-—-W--' 

Fig. XI-4.    Illustrating the parallel nature of thr multiplication task. 
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in the final result mißht be a carry out of the most significant bit     V'hen sign exten- 

sion is not desired,   it is thus possible to incorporate the x,y-  term in row 6,   and 

we are left  with just  5 rows to sum.     It is this  representation of the  product as a 

sum of conditional terms  that can be exploited by the ALU design. 

Having rewritten the product as a sum of terms,   each conditioned on a control 

bit.   the next  step is to minimize the sum-and-carry delays by exploiting the inher- 

ent parallelism of the array,    deferring to the five rows as A through E,  Fig.   XI-4 

shows how a tree structure permits simultaneous sums to be computed,  rather than 

performing each indicated  sum in serial,   left-to-right  order.     In  Fig.   XI-4,   each 

box denotes  an ALU adder,   and we assume that each add  is completed  in A seconds. 

During the  first  A seconds two add, are completed,   followed by one add in each of 

the two succeeding intorvals.     There are two advantages in this  scheme.     First, 

the total  delay would be 4A  seconds  if the  adds were done serially,   but  when the 

parallelism  is utilized,   only  3A seconds of delay result.    More generally, for larger 

sized numbers N bits  long,   a similar binary tree would  lead to (log    N)A  seconds 

delay,   whereas  a serial  procedure would  require (N-l)A  seconds  delay.      For N = 

16,   the saving is A(15-4)  = HA.  a very substantial figure.  When N is not a power 

of 2,   some   branches   of  the   full   binary   tree   are   pruned,   but the   saving   in time 

because of paralk'lism  is still obtained.     The second advantage is that the binary 

tree  arrangement can be  implemented  in a straightforward  and  natural  way by using 
the 74181   ALU,   24-pin  MST package. 

The 741H1   ALU,   shown in  Fig.   XI-5, operat« i on two 4-bit inputs in a manner 

prescribed by the four control bits.   So through S3>   and the Mode Control bit  M. to 

produce a single 4-bit output.      As  shown  in  Fig.   XI-6,   all of the needed control 

functions can  be realized by appropriate use of S    through .S3,   M.   and C  .   the last 

being the input carry to th    least significant bit.     Note that only the double cordi- 

tional  sum.   (A  if z)  + (B if y),   requires extra circuitry to translate the condition 

bits (z  and y)  into ALU controls,   but that this circuitry is very  simple,   containing 
only  an XOR  gate  and  an inverter. 

Figure XI-7  shows the complete design for a 4 X 4 multiplier,   in which the con- 

trol circuitry is shown in detail.     Depending on the .size of the   multiplier   desired, 

extra time savings may be  realized   by   appropriate   partitioning  of  the   array and 

insertion of carries,   but   the   basic   details   remain   the   same.     The authors have 

designed   |6 X  If,  and   16 X  24  arrays,   which illustrate further  refinements.     These 
designs are available to the interested reader. 

A   further   advantage   of   the   ALU   is   its   wide   availability.     Originally,   it was 

introduced   in   TTL.    but   Schottky   TTL   and   MECL   10.000  versions   are   now avail- 

able.     Worst-case   multiplication   times   will   depend   on   which  one   of  these   pack- 

ages   is   used,    but   a   16 X 16  design   should   yield   a  completion   time   of  95-100 ns 

Ql'\i No.   105 150 



Vcc ' hit 24 

GNO • rin 12 

O1 ^n' 

Fig.  XI-5.    Logic diagram for the 74181 Arithmetic Logic Unit. 

BASIC CONTROL SIGNALS 

FUNCTION S0 S1 
S
2 

S3 M co 

0 1 1 0 0 i X 

A 0 0 0 0 0 1 

B 0 1 0 1 i X 

A + B 1 0 0 1 0 1 

A-B 0 1 ) 0 0 0 

CONTROL 

FUNCTION 

A + B 1 0 0 1 0 1 

A-B 0 I 1 0 0 0 

A+(B if  y) y 0 0 y 0 1 

(A   if  z) + (B  if  y) z©y z 0 y z 1 

Fig. XI-6.    Control functions for the 74181 Arithmetic Logic Unit. 
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0  x2        «2   x,        x,   x0        x0  0 

JJ 1_1 U L_L 

0 0       x 

JJ L 

LJ LJ l_L 
7/,18l 

74 IS I 

n—i—i—T 
S6      S5       54       S3 

1—I—r 

"2 x2       'I  "l       ''O x0 

52       51       S0 

CONTROL 
0 

"I 

CONTROL 
I 

CONTROL 
2 

(0) 

*0'*3 

'\"3 

CONTROLS  0,2 CONTROL   1 

(b) 

Fig.  XI-7.    Four by four multiplier block diagram,  with oxternal 
control circuitry. 

in Schottky TTL.    This is considerably faster than the performance obtainable from 

specialized multiplier packages,  such as the Fairchild 9344 or the Advanced  Micro 

Devices AM 2505.  Since the ALU package has many uses,  it is relatively inexpensive, 

particularly considering the resulting multiplier speed.    The package count,  and hence 

power,  is high (approximately N(N+l)/4 for an NXN multiply; for N = 16,69 ALU's were 

required) but layout is simple,  and no other design incorporating standard commercial 

MSI packages has been able to yield the speed of this ALU array. 

Certainly faster or cheapr-r multipliers have been built.    The ALU in a binary tree, 

however, appears to be an optimal choice when very high speed is desired from standard 

commercial packages. 
J.  Allen,  E.  R. Jensen 
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XIII. SIGNAL PROCESSING* 
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A.    RECENT ADVANCES IN  THE  THEORY OF  RECONSTRUCTING 

MULTIDIMENSIONAL SIGNALS FROM  PROJECTIONS 

1.   Introduction 

The problem of reconstructing multidimensional signals from their projections is 

of interest because x-ray photographs and electron micrographs can be considered to 

be projections of three-dimensional objects.    Thus mathematical techniques for  per- 

forming such reconstructions will permit us to reconstruct visually opaque objects from 

their x-rays at different orientations and to determine the structure of macromolecules 

from  electron micrographs.   In a  previous report    some techniques were discussed 

whereby we could  perform  such a reconstruction; in the present report,  some other 

more powerful algorithms will be developed.   One of these algorithms, in fact,  permits 

the reconstruction of a broad class of multidimensional signals of any dimensionality 
from a single one-dimensional projection. 

The idea of reconstructing functions from their projections can be applied i > func- 

tions of any dimensionality; however, the most interesting problems,  since they have 

useful applications, are the two-dim» nsional and the three-dimensional problems.    By 

extension, therr- is a one-dimeni-ional problem,  but it is a trivial case because the pro- 

jection of a one-dimensional function is the function itself.   Most of the derivations in 

this report will be given in terms of the two-dimensional problem because it is n   ation- 

ally and conceptually simpler than the three-dimensional  problem, but we  shall also 

explore some of the issues that are unique to the three-dimensional case. 

In both of the algorithms that are developed here it is assumed that the function 

which is being reconstructed is baudlimited, and if a further assumption is made they 

will yield exact reconstructions.   If these assumptions are not appropriate for the prob- 

lem at hand, there are other techniques that will yield approximate reconstructions. 

This work was supported by the Joint Services Electronics Programs (U. S. Army. 
U.S. Navy,   and  U.S.   Air  Force) under Contract DAAB07-71-C-0300,   by the U.S. 
Coast Guard (Contract DOT-CQ-13446-A), and by M.I. T. Lincoln Laboratory Purchase 
Order CC-570. 
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(XIII.    SIGNAL  PROCESSING) 

Inasmuch as we shall deal with bandlimitud functions exclusively, it is appropriate to 

begin with a discussion of the properties of the projections of multidimensional band- 

limited functions. 

2.    Projections of Bandlimited Functions 

The assumption of bandlimitedness is not especially harsh,  for although most func- 

tions that we  shall reconstruct  are  spaceUmited   and hence strictly speaking not band- 

limited,  they are nearly so.    Furthermore,   if any algorithm is to be implemented on a 

computer,   it is necessary  to  reconstruct  a  sampled   multidimensional  function from 

sampled projections.     Thus bandlimitedness  is  implicitly assumed   to   a   greater   or 

lesser decree by all digital reconstruction algorithms.     In these  algorithms  we  shall 

explicitly assume bandlimitedness and then utilize this assumption in the design of our 

algorithms,   with the hope that they will yield high-quality  reconstructions  for  nearly 

bandlimited functions.   The last premise must be verified experimentally. 

INTEGRATION 

PROJECTION 
AXIS 

Fiy.   XIII-1.    Relationship between a projecti. " and a slice. 

The projections of a two-dimensional function (picture) can be considered  as  a  col- 

lection of line   Integrals  taken perpendicular  to  an axis,   which we call the projection 

axis.    Thus the projection perpendicular to the x axis,  p (x), can be defined as 

P()(x) ■ !*x f(x, v) dy. 

At a general angle   0,   a projection can be similarly defined by 

PflM " ^ _, ^ll • cosO + v • sinO, -ti • sinO -f v • cosO) dv. (1) 

and it satisfies the Fo.irii r «lansform relation 
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p8(u) K(WCüS 0, wsiii 0), (2) 

wlu'rt' F(u  . JJ) represents the two-dimensional   Fourier t"ansform   of   f(x,y).     The 
y 

i'i phi-hand side of Kq.   2 will be referred to as the slice of the two-dimensional Fourier 

transform at an angle 0.   Thus the one-dimensional Fourier transform of the projection 

of a picture at an anple  0  to the x  axis is a slice of the two-dimensional Fourier trans- 

form of that picture at an angle  0  with the w    axis.    This relationship is illustrated in 

Fig.  XIII-1. 

Fig. XI1I-2. Hegion of Fourier plane over 
which a bandlimited picture 
is nonzero. 

If we now assume :hat the picture is bandlimited, that is, that its frequency response 

is nonzero only in that region of the  Fourier plane   illustrated in hip.  XIII-2,   then we 

can us«' the sampling theorem to express the pic.ure in terms of its samples on a regular 

Cartesian raster as in 

f(x,y)=     ^ ) ./ mir    mr \ 

111=-"   11= 

(3) 

Since all   »f the projections transform to slices,  they to», must be bandlimited (in one 

dimension) and each projection can thus I..   .    panded in terms  of its samples as in 

I       n« \ 
(4) 

The bandwidth of each projection W^ can be expressed as 
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W W„ = 
e ; i     „i  i .    11 • (5) max { UosO|, |sine|) 

From Kqs. 4 and 5 wc can ascertain the Nyquist sampling rate for each projection, 

which is observed to be a function of G.  the projection angle.    Since we must work with 

sampled projections,  this will prove to be an important quantity. 

We can get an alternative expression for p0(u). not in terms of the samples of the 

projections, but in terms of the samples of the picture itself. If we take the Fourier 
transform of Fq.   3,   wc get 

or cr 

= zl   V     \ 
x   y     w^ 

\ \       (./rmr    niA f .  TT , 1 
L       L     "w'W>)exPpW(mwx      y^wK'V'        (6) 

m = -0O   n=-on 

where 

W    and      u     < W 

From Fq.  6   we can evaluate   F(u.cosO. wsinG) which is the expression for a slice (from 
Fq.   2). 

F{üco.e.w.ine)-i2    ^        )"      f(^,  ^expl-jf (mcosG+nsine)} 

m=-oo n=-« ^ 

X b^.^,(ujCos 0, wsinO). ._. 

Performing an inverse Fourier transform on Fq.  7 gives an expression for the projec- 
tion at arigle  0. 

BinWe(u-flco8e-f .ine) 

mT-^ nT-<* u ~ ~W  co's 0 " ^ sin e 
po(u)  W2  Z    Z  Hw- wj    —ir~—ni .  ^ 

In the two  reconstruction   techniques   that   follow,   we must impose one further 

restriction on the  picture  in addition to bandlimitedness.    We must assume that the 

digitized picture  f(^l, 22)   be nonzero for integral values of m  and  n only when  m 

and n are  in the range 0 « m, n < N-l.   for some finite integer N.     We call   this 

assumption quasi-spacelimitedness,  although note that we do not assume that f(x,y) is 

spacclimited  (which would contradict the assumption that it is bandlimited),  but only 
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that its samples are spacelimited.    This assumption has the effect of making the double 

summations of Kqs.   3,  6,  7,  and 8 finite. This,  like the assumption of bandlimitedness, 

is implicit in most reconstruction techniques,  since only a finite number of samples 

of the Fourier transform of the picture are generally computed,   and only a finite 

number of picture  samples  are  reconstructed. 

3.    An Algorithm for Reconstructing a Function from N+l   Projections 

Equation 4 gives us the smallest sampling rate that can be employed for sampling 

a projection in order that information not be lost by sampling.    Each projection,  of 

course,  can be  sampled  with a higher  rate.     The  traditional   approach   for   getting 

samples of the slices of a picture is to find a sampling rate that is large enough so that 

all of the projections can be sampled at the same rate.    The resulting sequences can 

then be aliased to give   M point sequences,  and these  M point sequences can then be 

Fourier-transformed by using a discrete Fourier transform (DFT) algorithm to yield 

M sample values along each slice.    The M-point aliased sequence x(n)  corresponding 

to the infinitely long sequence x(n)  is defined  by 

r 

x(n) =     J       x(Mm+n). 

If this  procedure is followed,   the   Fourier transform of the picture will be  known 

at points lying on a polar lattice.    The points of such a lattice can be thought of as the 

intersections of the  set of slices  with a family of evenly  spaced  concentric circles, 

including one of zero radius at the origin.   Once the transform of the picture is known 

at these points,  the  next  step is  to approximate  the transform of the  picture over the 

whole plane and then perform an Inverse  Fourier transform.    There are no nice 

polar ".sampling theorems" that will allow us to obtain directly the set f (^jf.vv"). 

As  a different   approach,   let   us   therefore   sample   each   projection   at its own 

Nyquist rate,   or  at  a   rate  proportional  to  its  Nyquist  rate,  then alias  the resulting 

sequences  to N  points  (N   is the  width of the digitized  picture) and use a DFT algo- 

rithm to get samples  of the   Fourier  transform  of the  picture.    If this procedure  is 

followed, the Fourier samples which result lie at the intersection of the slices with a 

family of concentric squares,  as Illustrated in Fig,   .\lIl-3. 

In the special case of a bandlimited quasi-spacelimited (BLQSL) function, a concen- 

tric squares lattice has definite advantages over  a  polar  one.     Along any horizontal 

or vertical lines in the Fourier plane,  the Fourier transform of a BLQSL function is a 

one-dimensional complex polynomial of degree N-l,   and  as a  result any line in the 

Fourier  plane  is   completely   specified   by   N-l    samples   that   lie   along that   line. 

Furthermore,   a BEQSl, function is completely specified by its DFT,  that is,   by the 
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I ig, .\1II.3. A B< t of samples of the Fourier transform of a haiidlimitccl 
rtinction obtained by sampling each projection at a rate pro- 
portional to its own Nyquist rate. 

x-PorNTS AVAHAMJ  FROM 

PROJECTIONS 

• - OFT  POINTS 

Fiß. XIII-4,  Set ,,r Fourier plane lamplea by which an • X ■ pteture can 
In- recotistiin led exactly,  under tin- asHiimplion that the pic- 
ture is handlimited and quasi-spacelimitcd. 
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(a) 

samples of its Fourier transform at F(^ i. ^p).  - f + 1 « i. j « y.  These points all lie 

on the sides of the concentric  squares or their extensions.    These properties enable 

us to reconstruct a BLQSL function exactly from a set of N concentric-squares pro- 

jections. 
Suppose, for example,  we have a two-dimensional BLQSL function of dimension N. 

Let us assume also that we have the 

capability of obtaining the projections 

of the picture at any angle we desire. 

We can thus take N projections at N dis- 

tinct angles in the range -45°  $ G  ^45°, 

and we can also take one projection at 

an angle outside this range.    The known 

points in Fourier space will then corre- 

spond to those illustrated in Fig. XIII-4 

for the special case N= 8. Along each ver- 

tical square side we thus have 8 samples 

and along these sides the  Fourier trans- 

form  is a 7    -order polynomial in the 
-juj 

variable o     •*,    Then,  using  Lagrange 

polynomials (or some other technique), 

wo can evaluate the Fourier transform 

at all of the DPT points on each of the 

vertical  lines,  except for the one at u   = 

0.    Now   consider   the   horizontal  sides. 

Along each of these lines  we also have 

a polynomial of degree 7   and we  also 

have  8  samples,  seven computed from 

the column calculations,  and the eighth 

provided  by the remaining projection. 

Since this projection was taken outside 

the range -45°   - n  «45°,   it must inter- 

sect all of the horizontal square sides 

(and must also not pass througli any of 

the DFT points whose value is already 

known).     Thus we can apply Lagrange 

polynomials to the horizontal lines to 

fill in the remaining DFT values. Con- 

sequently,  we know all of the DFT values 

exactly,  and a BLQSL picture can be 

;b) 

Comparison of reconstruc tions from a con- 
centric squares urid and from a concentric- 
circles grid, (a) Original picture, (b) Con- 
centric squares reconstruction, (c) Polar 
(concentric circ es) reconstruction. 
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„conduce. ,rom «. .FT so .Ha. we k„ow *. ... 0, ^'•^"^rZ ^ 

in.erpola.ion would no. have been necessary, tor .he remamme 

I„HS. XUI-5 we show ruction.   Inslead of using Laerange 

.he -"^-^^tl;:^ r    o sleuon, a si.p.er approxtaa.e s.ra.egy was 
interpolation to exactly pcrioxm samples from the 

Led   fron,   .he   original   pic.ure   whieh   is   ineluded   for   compar.son.   No« 

coneentric-squares recons.ruc.ion is .ruer .o .he original. 

4     Reeons.rue.lng a BLQSL Picture from a Single Frojec.ion 

'    Le. us now reslrie. ourselves ,0 .he s,ice a. an angle 0 ■ .an"    l/N.    Fron. Eq. 7 

this slice can be written as 

^A/N
2
 + i     //N2

 + 1 /     m=0  n=0 

otherwise 

if     |w|   ^N 

(9) 

Ifw(.dc.fitu.,(Nm+n)=f(^.^).  thenEq.  9 becomes 

Z 
IN   7J / 

/     Nu)    ^        "        \ a   ^      g(l) expf- 

wN- +1 vV +1 /   i=o V 

N "1 / TTCOI    \ 1  .    w   Ar2 7, 

= 0, 
otherwise 

(10) 

.u      n„ , at n - tan-1  1/N is a one-dimensional poly- 
ThuB, over .he region of inter«., ^'^'1  "       \. and .he coofficlen.s of .ha. 
,„mial   of degree NZ-1  in .he variable expM      yj^j' 

po^f are simp,y .be pic.ure samples ^V^^^J^Z: 
were scanned column by column.   Since 1-    -7== '       /-J—" 

\A/N  +1     VN   +1/ 
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2 
N     samples taken along the slice,   and knowledge   of a polynomial implied knowledge 

of its coefficients, specification of N2 samples along the slice at e = tan"1 1/N implies 

knowledge of the whole set of picture samples. (Similar statements can be made about 
other slices in the Fourier plane.) 

Let us now, for convenience, define G(w)  =  F(--    
Na) —.  —-^ \t   and let us 

  WN2 t :    v/N2T7/ 
,   A        ZWVN

2
 + 1 M

2 XT2 
set Au = .    Then if we compute G(kA«)  for k = - ^ + 1. . 0. 1 — 

]\jJ 2 » • ■ • •    »    » • • • i    £   • 

2 
we shall have N    equally spaced samples of G(w)  which extend over the  entire band. 

There is a strong reason for choosing this particular set of frequency samples on this 

slice.    If the projection p        ,  . (u) is sampled at its Nyquist   rate,    if   the   infinite 
tan     i 

sequence that results  is then aliased to give a sequence of length N2,   and  if   this 

sequence  is  then  Fourier-transformed by means  of the DFT,  the  resulting N2 point 
sequence is GfkAuO.    Substituting in Fq.   10,  we have 

N2-l 

G(kAw)=    Y     gwexp^-j2-^ k=-^+l ^ (11) 

Examining Eq.   11,  we see that GfkAoo) corresponds to the first N2 points of the N3 point 

DFT of the sequence formed by taking the N2  picture  samples  column by column and 
appending N   -N    zeros. 

The sequence G(kAoj)  could be obtained from the sequence g(l)   by means of a chirp 

z-transform algorithm CZT.     To obtain g(l) (the picture samples) from G(kAu), we thus 
need an inverse CZT,  which will be developed. 

These results have an interesting interpretation in terms of another problem.    The 

impulse response of a two-dimensional nonrecursive digital filter behaves exactly like 

the set of rectangular samples of a BLQSL picture and thus the impulse response, or 

the two-dimensional frequency response, of such a filter is completely specified by its 

frequency response along the line  G - tan"1 l/N.    As well as providing an interesting 

property for such filters,   this  result suggests a mapping between one-dimensional non- 

recursive and two-dimensional nonrecursive filter designs that may be useful in filter 
design.    These implications are worthy of further study. 

5.    Reconstructing a Three-Dimensional BLQSL  Function from 
a  Single  Projection 

Probably the simplest way to reconstruct a three-dimensional  sequence from  its 

projections is to consider that three-dimensional sequence as a stack of two-dimensional 
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sequenceH.    If wc think of UWHV two-diin« nMioiuil Hrquvnrr» a» lyina |Mr«lli I to Ihv 

x-y plant-,   and thi-n take a projection   parallel   in   the  x-y   plam-   «t  an  anglr • • 

tan"    l/N with ihv x ax». ,  then the renultlnß two-illnieni»limäl pmji < llcm of the Ihrrr. 

diincnsional ohjci-t will be a slai k of one-diinenitlonal projection fum lionn, earh of «rhkh 

i8  .he projection of one member of the original  »tack of t»   •Uliiirniiional fuiKllnnr 

and each of which is  taken  at ita critical angle.    Thl*  in a ittralshlfonrard pkle(u>lon 

Of the two-dimensional problem and hardly require»» elaboration.    U would b«* a cumpu- 

tationally efficient .>>» luim-,  howe^i r,   i.' a «i.-upb «•   n . oii-irucllon are/e not dci»lr«Hl, but 

only a limited number of cross sections. 

From   a   theoretical   |>oint   of   view,   a more   lntere*Uitg   approach  to  the  UtTM» 

dimensional problem is to parallel the reasoning of the two•dtoien»tonal analysl».    In 

that case we found a line in the Fourier plane: If we knea the Fiairler tran*form of Hu- 

picture along this line, then we knew the «-hole set of picture *anip|ri>. Nich a lim alao 

exist:   in the three-dimensional case.   Ibis Is that line «hlch Iw trace«! t«ul by th«- vet t«.i 

u  ,   wher«- 

\ ^N4 ♦ N2 ♦ I   V^^4 ♦ N2 ♦ I     AA4 * N2 ♦ I / 

Along this line the frequency rtaponap IN a polynomial of degree N -I, and the coeffi 

cients of this   «dynomial are the function samples '(TT» C?» wl» 0 '  m, n, p ^ N-l, 

where   W   is the bandwidth,  defined as in the two-dimensional -aitc.    If  wr   sample  this 

line at N    evenly spaced points over the band,  then 

N-l   N-l N-l 

ma0   n»0 p«0 

It- -^ 0, I Ä-. ♦ IJI 

I'hu.s we have the first N    |Niints of an N   point sequence.  Kquatton 12 ran be aolvrd bf 

using the inverse chirp /-transform. 

The projection of a three-dimensional function Is l«ro-dlmenst«nal, «rhereas  the 

critical  line along which we dcain  tin frequency renponse is one-dimrn»ional.     Ihls 

frequency  rvsponse can be evaluated directly front  the   ttftti-dlmi n«>lonal   proi'tllon 

samples (the projection is a bandlimlted function! or equi\al« ntly a one-dimensinnal pro- 

jection of the two-dimensional projection can IN- computed digitally am! then translormed 

If  the angle of this  projection   Is  chosen properly,   this  slice of a  »lire will enrrt-• 

spond to thi- desired line.     It munt be remembrfed  howevrr,   when  Working  With   Ihr 
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CRITICAL   LINE 

hit;. XI1I-6. Two-dimensional slicu of the Fourier tran.sform of a 
three-dinu-nsional funetion taken perpendicular to the 
plane ^ = Nw .   The bandwidths of the slicu are shown, 

as well as the location of the critical line, whose crit- 
ical frequency response determines the whole three- 
dimensional frequency response. 

two-di,. ensional projection that althoußh this is a bandlimited function,  the bandwidth 

in the two orthogOMl  frequency variables is a function of the direction of that  projec- 

tion.    In Fig.   Xm-6  we show the  relevant  parameters for computing the frequency 

response along the critical lin- when the original projection was projected onto the plane 
-   V 

x       y 

('.    Inverse Chirp  /-Transform 

I be chirp  /-transform  (CZT) algorithm7   is  an efficient algorithm  for  evaluating 
the sum 

I.-l 

X.   --    )    x(n)(AWk|M 

n=0 
k = 0.  1. K-l, 

(13) 

wher 

A = A0 exp{j2ireo) 

W = VV   exp(j2ir« ). 
o      '  ■'    To 

The  CZT  calculates the   Z-trj, isform of the finite  duration  sequence x{n)   at  a  set  of 

points that are regularly spaced on B spiral in the  z plane as illustrated in Fig. XIII-?.7 

Equation 11 can be seen to be of the same form as Eq,   13 if in place of the sequence x(n) 
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we substitute the sequence g(l)  =  g{Nm+n) = f(^, ^) and if we set A = expf-j ^ + l) 

and if W = expljZir/N ).    The sequence Xk and A and W are known in this   particular 

case,  and we desire a means of calculating g(l).   What we need,  therefore,  is a means 
of inverting Kq.   13 - an inverse CZT. 

klmiz) PLANE 

Re(z) 

Flg.  XIII-7.    Illustration of the independent parameters of the 
CZT algorithm and the inverse CZT algorithm. 

(Modified from Rabiner et al.8) 

Since the sequence Xk corresponds to samples of a polynomial of degree L-l, we 

know that Kq. 13 can be inverted if there arc more than L independent values of X , 

or if K a L. This follow.'- from the fact that the matrix of coefficients [(AWk)nJ is a 

Vandermonde matrix. One possible technique to use is to invert (13) directly. For 

values of K of the order of several thousand, however, this is computationally not 
feasible. 

Another approach which proves to be far more attractive computationally,  although 

at first appearance it would not be so,  is to use the Lagrange polynomial interpolation 

formula  to  reconstruct the complete  polynomial over  the whole  z  plane   from   the 

set of K  samples  an^i  then perform  an  inverse  z-transform  integral   of   this   poly- 
nomial to get the sequence x(n). 

-1 If X(z)   is a polynomial of degree  L-l  in z"    and  if X(z)  is  specified at the   points 
/..    ,,  then 7. i.-r 
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1 
m=0 

X(z) =    >     X(Zrn) £m(z 
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(14) 

where 

z"1  = [AW"1]"1 
m       l J m = 0, 1 L-l 

and  It   (z~ )  is a  Lagrange interpolating polynomial 

m (Z-
1)= 

(^V)^^)---(^-CO^-Ci)---(^-^i) 
\m     o/\m     l/Vm     m-l/\ m     m+1/ V m     m+1/ 

Since the üenominator of jf^(z~ )  is a constant,   let us write it as  l/Cm,    Thus 

L-l 

m m* 

X(z) 
V-     X(z    ) C 

"n   / -1     -1\ m=0   ^z    -zmj 

L-l 
n 

£=0 
n^z-U-M (15) 

Equation   15  represents the z-transform of the sequence x(n) which we desire.     Thus 

we see that the sequence x(n)  can be  regarded as the impulse response of a bank of 

resonators and a comb filter in cascade,  as in Fig. XIII-8. 

COMB  FILTER 

DIGITAL  RESONATORS 

Fig.  XIII-8.    Digital network implementation of the inverse CZT. 
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Let us define h(n) to be the impulse response of the bank of resonators. From Eq, 15 
we can write 

L-l 

h(n) =    2    -C^z.) z^1 n = 0, 1 L-l. 

i=0 

If we recognize that z. = AW-1,  then 

L-l L.j 

h(n)=   V    - C^lz.) An+1W-i(n+1> = An+1    7   - C^z.) W^ W"1" 
i=0 

n = 0,  i, . . ., L-l. (16) 

If we write 

N-l 

CZT(x(n),A,W,N) = ^     x(n) A~nWnk. (17) 

n=0 

then we can write  (16)  in the form 

h(n) = -An+1CZT(CnX(zn). W. W-1, L) (18) 

and thus  h(n) can be evaluated efficiently by using the CZT algorithm itself. 

The output sequence x(n) is then 

x(n) = h(n)   0  mln), 

where   0   denotes convolution. Inasmuch as we only care about the first L values of the 

sequence x(n)and m(n)is a causal sequence of length L+i, only the first L values of the 

sequence h(n)are necessary.   This fact allows us to evaluate h(n)using a CZT,   and will 

further allow us to perform the convolution oi (18) using high-speed convolution techniques. 

Except for calculating the arrays Ck and m(n).   the computation of the inverse  CZT 

can  al)   be done   efficiently.    In fact,  the time  required to calculate an inverse CZT 

Is  approximately  twice that  required  to calculate  a CZT,   and thus   is  roughly pro- 

portional to  2L  log2   2L if L is  a  power of two.      To the  best of my knowledge, there 

are  no particularly convenient methods for calculating Ck and m(n).     These quantities 

do not depend  upon  the sequence Xk,   bui   only on  the  location of the  samples  of the 

z-transform in the z  plane,  and therefore ti ey will be the same for all reconstructions 
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of a given size, which will allow these arrays to be precomputed and stored.     In this 

sense, the calculation of these quantities can be overlooked when talking about compu- 

tation times.    To reconstruct a 32 X 3? array from a single projection requires approx- 

imately 105 operations (complex multiplies and adds) if the calculation of these initial 

arrays is overlooked,  and it requires approximately 5000 complex storage locations. 

To solve Eq.   13 by direct inversion would require approximately 10    operations and 

roughly   10    complex storage locations. 

A one-projection reconstruction algorithm is now being implemented. 
R.   M.   Mersereau 
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6 O   Tretiak,  D.  Ozonoff,  J.  Klopping,  and M.  Eden,   "Calculation of Internal Struc- 
ture from Multiple  Radiographs,"  Proc.   Two-Dimensional   Digital Signal   Pro- 
cessing Conference,  University of Missouri,  Columbia,   Missouri,  October 7, 1971, 
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Telegraph Company.    Printed by permission. 

B.    TRANSIENT  RESPONSE  OF  A VARACTOR-CONTROLLED 

OSCILLATOR 

A study has been made of the Q-related effects on the transient response of a 

voltage-controlled negaüve-resistance oscillator.1   The equation governing the nonlinear 

oscillations of a second-order time-invariant circuit has  the form 

(l2x .     2v _ ,f/     dx\ 
-F+V" 6fVx' dt) dt 

in which f(x,  gjr) is a general nonlinear function of the variable x  and its derivative. 

QPR  No.   105 183 



(xiu. SIGNAL pnocmoioi 

and 6 is proportional IO ih.- reciprocal uf the effective Q of th.- circuit. A perturbaU.mal 
analysis of this equation jields -. solution in which th.- »nstantanfoua frequi-ncy of OHCü- 

lation^is given by an wprOMloa of tht-  form ^ ' *0 *  «•(«). where a corrraponds 
to tho magnitude of OM amplitude nvolopt of thr oscillationH. Thia fxpreasion indicate« 

a possibh- vaiiation in fit-qmncy becauar of a variation in the amplitudr envelope during 

a transnnl period of th.« oscillations.    It can bo argurd that the frequency doea not reach 

a sU'ady-stat«- value until the ampiitudt- n-acht-a a att-ady-atatr value. 

1. CftUM and Modi- of Transi- nt ()p»ration 

An analysis of an id.alized atep-change in »ne of the- fiequincy-deUrmining elenunta 

indicates that such a chang.- could cauae a dlaturbanc- from thr equilibrium aU-ady-atat»- 

uacillation.    Such a disturbanc impli.-a that thr stat.- of UM oacillalion.   specififd 

ill the phaa.- plan.- by x  and dx/dt immediately after th.- change occura.   doea  not 
correspond in general to a state that is located on Uu- aleady-atate limit cycle. Standard 

phas.-plan.' analysis shews that if tht« stat.- of the oscillator is deacribrd by a aet of 
cooidinat.s (th.- operating point) not located on thr limit cycle, th.- oscillation will 

spiral to the  Stable limit cycle.    This apiraling to th.- Umit cycle corrcaponda to a 
variation in th.- amphtud.- .-nvc-lope.    The nonlinear mechanism that determines the- 

si.-ady-stau- limit cycl.- operation also controls thia transient reaponao buck to th< 

steady  stat.-. 

2. Specific Case- - Van d.-r Pol N.gativ.-U.-sistano.- Oacillator 

A specific case of an oscillator with a Van der Pol type of nonlinearity was studied. 

'(«£) = '.-«=.£. 
The analytical suitttion to a »econd-order approximation indicated that th.- parameter 

hi- -) has a strong influence .-n th.- tranaient reaponae.  a firal-ordcr effect on the 
rate of smpUtude variation, ind a aecond-order rff.-ct on th.- fr.-qu.-ncy. These relaü.ms 
tak.    th.-   form   da dt =  5U(a).   and  ^ - wo + 62K(a).  wh.-r.-th.- B(a) and K(a) an-spe- 

cific  (unctions   .f a.   corr.-sponding to th.- solution of th.- Van der Pol .-quation. 
It was not.-d that the lower the y of th.- circuit,  the faslrr the r.-apons.- back to th.- 

st.-ady stat.- following some disturb^nc«-.  but at the expense of frequency stability and 

noise reduction properties of the oscillator in th«- steady state. 

3. Lowe-.- Limit of Transient H.-sponse Time 

Spe- »fie consideration of a varactor-controlled oscillator established a lower limit 

for th.- transient reaponae time,   l-irst. consider the case of a circuit with an infinite g. 

the harmonic oscillator,  governed by the second-order differential equation 
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occurs during a synthesis run is reported with the block identifier showing where  it 

happened.    If this occurs,  signal levels in the vicinity of the offending block should be 

reduced by modifying the configuration and/or inputs to a level just under that which 

causes overflow.    The only synthesizer processing blocks in which overflow can occur 

are addition-typo blocks and filters. 

One can easily envision achieving real-time synthesis by doing the final signal pro- 

cessing in hardware,  either analog (for example, oontrolling Moog or Buchla modules) 

or digital (which could be designed to be much more flexible and would be inherently 

more stable).    The cost of digital hardware continues to decrease rapidly,  which sug- 

gests that a digital hardware synthesizer will soon be economically feasible.    At the 

present time wc are making a modest effort to design and construct such digital hard- 

ware.    With a real-time synthesizer additional real-time (at "performance" time) con- 

trol inputs would become possible.    The distinction between notation inputs and real-time 

inputs   would   be   somewhat   analogous to the distinction between a composer and a 

performer or conductor. 

Richard E.  Albright's thesis research   contributed significantly to the evolution of 

MITSYN.    Many conversations and work sessions with RDbert P.  Ceely,  a composer 

who has been MITSYN's most demanding user,    have also stimulated the work. 

W.  L.  Henke 
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C.    SPEECH ANALYSIS BY  LINEAR   PREDICTION 

I.    Introduction 

This report describes the development of a speech analysis system based on linear 

prediction of the speech wave. The analysis is achieved by representing the speech wave 
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in terms of a set of parameters closely related to the glottal excitation function and the 
vocal-tract transfer function. 

The system has been implemented by utilizing th.1 computer facilities of Group 24 

at Lincoln Laboratory, M.I.T.   These facilities include the Univuc 1219 computer,  which 

is a medium-sized general-purpose computer; the Fast Digital Processor, which is a 

fast programmable signal processor attached to the Univac 1219;  and peripheries, such 

as A/D and D/A converters and various display facilities.   The system is capable of 

performing real-time spectrum analysis when both spectral en ss-section and spectro- 

graphic displays are possib?e.    Effort is now directed to'vard evaluation of its perform- 

ance in extracting such acoustic parameters as formants and fundamental frequency of 

voicing.   An initial attempt at formant tracking on spectra derived from linear predic- 
tion has given promising results. 

We shall review briefly the theory of linear prediction,  describe the implemented 

system,  and give some preliminary results of speech analysis using this system. 

2.    Theory 

Detailed treatments of the theory of linear prediction and its variations have betn 
1-4 

reported. Our analysis is based on the speech-production model shown in Fig. IX-6. 

The all-pole digital filter H(z) represents the combined effect of the glottal source, the 

Fig.  IX-6.    Model of speech production. 

vocal tract,  and radiatio    losses.    In this idealized model the filter is excited either 

by a periodic impulse train for voiced speech or random noise for unvoiced speech. 

The speech production model can be equivalently characterized by the difference 
equation 

s(n) =    S   a s(n-k) + x(n), 
k=l    K (1) 

th 
where s{n) and x(n) are the n     samples of the output speech wave and the input, respec- 

tively. The a^s are the coefficients characterizing the filter H(z),  and henceforth will 
be referred to as the predictive coefficients. 
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From Kq.   I It i* ch-ar tlial wt- can drlrrmlnf llic U^'H If wr know the »n|iul and 2p 

COIIMeutiV« value»» of tf(ii).    The flml |» «'f theut« valuvH niTven u« inllli«! c«>niim«ini». Wr 

shall rt'strict oiirni'lvvH IHTI- lo voici-d H|KTch in which ihr Input IM a pcrhtdic lin|HilMc 

train.    In thlM case the a.'» can be dctrrmlnrd witli kn««wlcdgr of only 2p connecutlvc 

valut« f>f ä(n) and the jiosition «»f tin- ImpuUes.    For thl« idealized n.nlel,  we can define 

the predicted value of »(n) an 

P 
5(n) ■.    1   a  s(n-k). (2> 

k'l 

The difference between H(n) and H(n> will be ten» exce|H for one nample at tl«e iMKinninß 

of each period. 

In reality,  however.  M(n) is not produced by thin highly «deallted model und tln-refore 

prediction of a(n) baHed on Kq.  2 will introduce error.    If we are to nppruxlmate n(n) 

by s(n) as deiinet! by Kq.  2,  the a  'H can only be determined with the lipecificatlon of 

an error criterion. 

We can choose to determine the a.'« by minlmillng the mean-squared difference 

betwe« n s(n) and s(n),  that in,  by nunimi/int! 

E •   £   [■(n)-s(D)J . W 
n=0 

Note that the .squared difference U aummed over all Mamplea excel* <»ne at the beginnin« 

of eacn period,  and we have artmimed that the minimization i» t«» be carried out over a 

.section of s(n) of lenyth N.    It is also important to note that  p more values of a{n) are 

ive led for proper boundary condition*. 

The minimum mean-Hquared error criterion la chosen instead of other error cri- 

teria because the- det mtlnatlon «»f the aj^'s now reduces to the solution of the following 

.set of linear equations. 

P 
1   a. 0..   = « 

k-1    kjk       J" 
j =   1.2. J p. H» 

where 

0.   =    1    .s(n-j) s(n-k) k» 0.1,2 p. (M 
**     n=0 

Note that the .sum in Kq.   S excludes one |Hiint at Hie iMninnin»; "f <n h |M ri<.<l. 

Kquation 4 can be written in matrix form as 
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(6) 

where ♦ ^ « p x p matrix with typical elemert *   ; a and ± ar. p-dimensional vectora 
with the J     component Klven by ^ and #. , reHpectively.    The solution of this matrix 

equation ig greatly Himplified by tin- fact that the matrix is aymmetric and hence recur- 
aive procedure« are applicable. 

It in of imereat to compare the analysis procedure outlined above for two different 
caae«.   If the fundamental frequency of voicing i* known in advance,  the analysis can 

be carried out directly,  in the sense that Eq.  S can be evaluated exactly.   In practice, 
however, it is highly desirable to carry out the analysis without a priori knowledge of 

Pitch.   In this caae an approximation has to be made and additional error is introduced. 
We shall illustrate this point by a simple example,   but the argument can easily be 
generalised to Include more complicated situations. 

Let us assume that there Is only one pitch pulse in the data and It occurs at n « m. 
If m is known, then Kq.  S can be evaluated a« 

N-l 

J*     n»o rri 
n#m 

Equation * can not be evaluated explicitly, however.  If m Is unknown. 
Let us now approximate ♦ . by 

• N-l 

*lk '     r    ^""i* ■("-•«»• /«» ,H     n»0 (8' 

Comparing Eqs. 7 and 8. we find that the trror In ♦.  is given by 

'jk " V " V ' ■fcHl •'m-k> (9) 

By the nature of the speech wave. «(m-J) and s(m-k) are small compared wuh samples 

at the beginning of each period. Therefore the error €Jk Is smaU compared with «     f.,r 

any reasonable N   Results of oomparlng the two analysis procedures »ill be presented. 

The theory of linear prediction has   .U.   been formulated In a  alightlv different 
way. '     Let e(n) denote the imtput of the Inverse filter if't«) when  it la excited 
by s(n).   If we choose to determine the t^'s by minimizing the total energy in r(n). 

the set of equations obtained can be sl»wn to be almost Identical to Eqs. 4 and S. 

The  only  dlffrrrnce  between  the   two formulations Is that,   since e(n) Is of length 
N*p. the matrix ♦ in the second formulation is of Toeplltt form, 

•jk ' •ij-kl.O- (10) 
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Although the theory developed thus far is for voiced speech,  we have used the same 

procedure to determine the predictive coefficients for unvoiced speech. 

3.    Speech System 

Figure IX-7 is a block diagram of the analysis system.    At present, only that part 

of the system enclosed in the dashed lines has been implemented.    Input data are first 

p.-t-emphasized (10 dB/octave).  bandlimited to 5 kHz,  and sampled at 10 kHz. The com- 

putation of the $.k.  as defined by Eq.  8.  can be greatly reduced by noting that 

*-,,,, = *•.+ sH"1' »H-J) - s(N-l-i) s(N-l-j). .1+1. k+1        ik 
(ID 

Therefore only L for j = 0. 1. 2 p need be computed directly.   These are the first 

p+ 1 poiltl of theJshort-time autocorrelation function of s(n).    The rest of the  matrix 

elements arc obtained recursively from Eq.   11.    The last two terms on the right-hand 

side of Eq.   11 can vanish to result in a Toeplitz matrix,  depending on how the problem 

11 formulated.   After the elements of the matrix are formed.  Eq. 6 is  solved by the 

method of square-rooting. 

IVJ' VHCH 

COfFFICItNT 
(»III ACTON 

1 

v/uv 
DfOSiON 

-J      PITCH 
-^ClTHACTiONJ 

SPtCTBUM 
«WIYSIS 

RPECTRO&HWMIC-j 

Fig.  IX-7.    Analysis system. 

From the predictive coefficients, the approximated spectral envelope of s(n) can_then 

bo computed as | H(ejw)|. Note that the unit-sample response of the inverse filter H (z) 

is given by 

h(n) = < 

for n = 0 

for n ■  1. 2. 3, 

otherwise 
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Therefore | H(ejw)| can be obtained efficiently by computing the discrete Fourier trans- 

form of h(n) with a fast Fourier transform algorithm,  and then inverting the result. Each 

spectral cross section is multiplied by the rms value of the input data to provide gain 

normalization. 
Both the input data length N and the order of the filter p are variables; the choice 

of these variables has been discussed elsewhere.1, 3   Unless otherwise specified,   all 

results presented are obtained with n = 256 and p - 12.   The coefficients are recomputed 

every 6. 4 ms. 

4.    Preliminary Results 

In Fig. IX-8 spectra of a synthetic vowel /a/ ootained by using various techniques 

are compared:   (a) and (b) by windowing  (with different window widths) and   Fourier- 

transforming the waveform,  (c) by cepstral smoothing,6 and (d) by linear prediction. 

In Fig. IX-8a the effect of glottal periodicities can be seen as the ripples superimposed 

on the spectral envelope.    These ripples are greatly reduced in Fig.  IX-8b because of 

spectral smearing of the wider frequency window.    In Fig. IX-8c the effect of glottal 

periodicities is removed by a homomorphic technique. This effect is also removed in 

Fig.  IX-8d.    But.  since the analysis is based on a specific    .odel and thus limits the 

number of spectral peaks,  there are no extraneous peaks in Fig.  IX-8d.    If we compare 

the locations of the spectral peaks with the actual values of the five formants,  it is clear 

that,  for this example, the spectrum derived from linear prediction provides accurate 

formant locations. 
Figure IX-9 shows the spectrum of the same vowel obtained by linear prediction, 

except that in this case the analysis is carried out pitch-synchronously.    Comparing 

Figs.  IX-8d and IX-9. except for the bandwidth of the second spectral peak,  we find that 

the qualitative difference between the two spectra is quite small. 

It should be noted that we have chosen to use a lot of synthetic speech material in 

our study.    This is because parameters of synthetic speech are known exactly. There- 

fore the use of synthetic speech can provide us with a more objective evaluation of the 

analysis system. 
Figure IX-10 is a spectrographic display of a sentence generated from a synthesis- 

by-rule program developed by D.  H.  Klatt.    Some observations can be made concerinig 

Fig.  IX-10.    First of all, the smooth and continuous formant trajectories are clearly 

visible for all non-nasal sonorants.    Second,  the analysis is able to separate closely 

spaced formants very well,  as in the case of /r/.    The analysis also worked well for 

fricatives,   nasals,   and stops,   in the  sense that spectra   obtained   during   i'rication, 

nasalization,  and aspiration contain the  important features characterizing these pho- 

nemes.    For example,  spectra derived from  linear prediction for  nasals all have a 

low-frequency peak, followed by a relative  absence of energy in the  500 ~ 1500 Hz 
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region.    These are some of the important spectral attributes of the nasals. 

Figure IX- 11 is a spectrographic display of a sentence spoken by a male subject and 

has features similar to those discussed above. 

TIME(5) 

Fig. IX-10.    Spectrographic d^play of the sentence  "This program synthesizes 
speech by rule."   (Synthetic speech.) 

5   p- 
N 
X 

Z 
LU 
D 
o 

o - 

TIME   (i) 

Fig.  IX-II.    Spsctrogrmphic display of the  sentence  "Can you 
be more sprcific?" spoken by a male subject. 

From Figs. IX- 10 and IX- 11 it is clear that during the voiced portion of speech the 

furmants are sharply defined and their trajectories are smooth and continuous. It is 

therefore reeeoneble to expect formant tracking by a simple peak-picking algorithm to 

give good results. Although results of this are not included In this report because a 

voiced-unvoiced decision has not yet been implemented, formant tracking by a simple 

peak-picking algorithm worked well in a few examples that were tried. 

The system provides highly interactive analysis and display and is capable of real- 

time processing. Figure IX-12 is another example to illustrate the highly interactive 

display capabilities of this system. The sentence is spoken by a male subject. By 

setting the pointer to a specific instant of time on the spectrographic display, we can 

display and examine the next twelve cross sections on the other oscilloscope. 

QVR  No.   IDS 140 



(IX.    SPEECH COMMUNICATION) 

^^^^HH 
N ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^H^^B 

X ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^B 
.* 5 -1 
5 1 
Z ^^^^^^^^^^^^^^^^^^^^^^^I^^^^^^^^^B tu ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^B 
D ^| 
o ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^H 
UJ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^B ae ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^H 
u- I 

0 
"1                               1    '    ^    ~- ^ 

(b) 

Fig. IX- 12. (a) Spectrographic display of the phrase "Digital signal 
processing" spoken by a male subject; (b) 12 cross 
sections starting from the pointer in (a). 

5.    Summary 

We have partially implemented a speech-analysis system based on linear prediction 

of the speech wave.    The analysis technique differs from all other techniques,  in that 

it is closely tied to a speech-production model.   Our limited experience with the system 

indicates that it is well suited to spectrum analysis and is potentially very useful for 

formant tracking.    The voiced-unvoiced decision and fundamental-frequency extraction 

parts of the system are now being implemented. 
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The fact that the analysis is based on a specific speech  production  model also 

imposes limitations on the technique.    It is well known that during the production of 

nasals and fricatives there exist zeros as well as poles in the vocal-tract transfer 

function. It can be argued that we can always approximate these zeros by multiple poles 

and that the important features characterizing these   phonemes are generally contained 

in the overall shape, not in the specific pole-zero locations, of the spectrum.   There 

are other unsettled issues,  such as whether the input speech should be windowed, which 

of the two formulations should be chosen for actual implementation,  and so forth.   We 

are now evaluating the system with synthetic-speech material,  with all parameters such 

as formants and band widths known exactly.   We believe that this evaluation, together 

with speech synthesis based on linear prediction,  will help us resolve  some of these 
issues. 

We hope that this system can serve as the acoustic parameter extraction stage of 

a speech-recognition system.    Although it is premature to speculate on its performance 

for acoustic parameter extraction, the highly interactive analysis and display facilities 

now developed have proved to be useful in studying the spectral characteristics of pho- 
nemes and the spectral changes from coarticulations. 

Programming consultation with Mrs.  Stephanie McCandless is gratefully acknowl- 
edged. 

V. W.  Zue 
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B.    SOME  CONSIDERATIONS IN THE USE  OF  LINEAR 
PREDICTION  FOR SPEECH ANALYSIS 

1.    Introduction 

Recently, the analysis of speech by means of a technique referred to as linear pre- 
diction,  predictive coding, or least-squares inverse filtering has received considerable 

1 -5 
attention. This technique is Jirectel toward  modeling a sequence as the output 
of an all-pole digital filter.     When the sequence to be modeled is specified over the 
domain of all integers n,  there is a well-defined  formulation of the technique.     When 
only a segment of the sequence is available,  however,  which is always the case in prac- 

tice, there are several formulations of the technique that are closely related but have 
important differences.    One objective of this report is to summarize these differ- 
ences and their implications. 

When the sequence of data to be modeled is of finite length and, over the interval for 
which it is specified, corresponds exactly to the unit-sample response of an all-pole 

filter, the parameters of the model obtained by using linear prediction may be nonunique. 
II' the data correspond closely, but not exactly, to the unit-sample response of an all- 

pole filter, then the solution will be unique, but the unit-sample response of the resulting 
filter may be considerably different from th' data and small changes in the data will 
result in large changes in the parameters of the model and its unit-sample response. 

A second objective of this report is to discuss this property of the technique. 

2.    Formulation of the Linear-Prediction Problem 

We shall consider the formulation of the technique for two problems.    In problem A 
the data are specified for all n,  and in problem B only a finite segment of the data is 
available. 

a.    Problem A 

Consider a sequence 8(n) defined for all n and for which 8(n) ■ 0 for n < 0.    We seek 
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an all-pole filter with transier function S( f ) > such that its unit-sample 

.-k 

k»l    *' 
A A A 

n-.sponsr 8(n) approximates s(n).    From the form of S( *), 8(n) for n > 0 is given by 

(n) =   2    «^»(n-k). 
k=l 

(1) 

In the linear-prediction technique we define a predicted value of s(n). denoted by sftn), as 

s(n) =   /     aks(n-k) 

k^l 
(2) 

and choose the parameters a. to minimize the error € defined as 

r,_.i2 ^ » Y    |8(n)-si 

n=l 
(3) 

n=l 

s(n) - y    akK(n-k) 

k"l 

We not«- that tht- sum on n excludes the origin because s(o) depends only on a    and can- 

not affect th«- result of the minimization. 

By Mttiag ö//8a   to ze^o *~T i - I, 2 p, we arrive at the following set of linear 
equations: 

2    ak   >     s(n-j) 8(n-k) = y    8(n) 8(n-j) j=1.2. 
k^l n^l n=l ksl n=I 

In matrix  notation, 

(4) 

♦ a = 4». 

rvhere 

(5) 

■I 

n=l 
(6) 
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*j - V 

It can bf shown that the matrix is symmetric and Toeplltz: that is, 

and 

% S ♦jl 

*i+i.j+i s*iy 

ThtTefore the solution of Eq. S is computationally straightforward and efficient.6 

We shall examine some of the properties of this solution. 

I. If s(n) is indeed the unit-sample response of an all-pole filter 8(n) =    2:   b.sjn-k). 
k=l 

then with q •« p the procedure leads to the unique solution a.   = b.   for k = 1, 2,.. . , q, 
and a.  = 0 for k > q. 

II. It can be shown that the solution S< * ) corresponds to a stable filter.7 

lii. It can be shown that the error f  is monotonic with p. 

iv.   Let us define the autocorrelation function of 8(n) as 

R. »   )    s(n) s(n-j) 

i.»0 

and the autocorrelation function of .s(n) as 

r 

J ' Z    «(n) s(n-j). 
nsO 

* A A 
It can be shown that  K   and R   are related by  R   = lit /!{   |R   for i = 1   2 

J J j     '   o     o'   j .i        >   . 
v.    Minimizinc Kq.   3 is equivalent to minimizinR 

(7) 

(8) 

'■^ 

S(eJw) 

«•n J-I 
■i.. (9) 

where 

A 

I -   r    a 
k=l k.; 

.-k 
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Therefore, the error criterion can be interpreted in a slightly different manner.    Let 

u(n) denote the output of the filter S"1^) when it is excited by s(n).   The linear- 
prediction technique then corresponds to determining the {ak} such that u(n) is best 
approximated by a unit sample at n = 0. 

From Eq. 9,  we see that the error is dependent on the ratio of S{e^) vs S(e^). It 
is also^clear that the minimization depends on both the magnitude and phase of S{ejw). 
Since S(e;,w) can be shown to have minimum phase (that is,  all poles and zeros are 
inside the unit circle),   this procedure   will   work best when Sie*") is also minimum- 
phase.   Heuristically, we can argue this in the following way: Since S( «) is stable,  we 

shall concern ourselves only with the zeros of S(^).     If S(^ ) has zeros   inside  the 

unit circle, each of these zeros (excluding those at the origin) can be   approximated 

by multiple poles by Taylor series expansion,  and the approximation will improve as we 

increase p, the order of S(^).    This suggests that if s(n) is minimum-phase, the error 
asymptotically goes to zero as p increases.    This is no longer true,  however,  if S( «) 

is not minimum-phase.    Consequently it would be expected that if S(^) is not minimum- 
phase, the error will not asymptotically approach zero as p increases. 

b.    Problem B 

In this case we consider a finite segment of data of length N which we wish to model 
as the output c p an all-pole filter.    Typically, this problem has been formulated in two 
ways. 

Formulation I 

The data are multiplied by a window w(n) and the N data points are numbered from 

n = 0 to n = (N-l). The window is of duration N so that multiplication of the data by the 
window results in a sequence s'm) which is zero for n<0 and n>(N-l). The sequence s(n) 

in problem A is then taken as the sequence ■'(n).    In this case most of the results of 

problem A remain unchanged,  although the sum over n is now finite.    The matrix is 
again Toeplitz and the set of equations can be solved efficiently. 

This formulation is sometimes referred to as the autocorrelation method,  since the 
matrix » is an autocorrelation matrix of s(n),  as in problem A.    Empirically,  it has 

been found that for small N it is necessary to multiply s(n) by a smooth window rather 
than simply to truncate it,  in order to minimize the end effects.3, 4 

Formulation II 

No assumption is made about the data outside the interval on which they are given. 
Specifically, the first p values of the data are taken as initial conditions and it is 

assumed that with n = 0 denoting the beginning of the interval on which the data are given, 
the input to the all-pole filter is zero for p ^ n < N.    The error ^ is defined as 
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N-l s-l 
n=p 

s(n) -  )    aks(n-k) 

k=l 

8^ 
where s(n) denotes the data.    To minimize the error, we set -z— = 0 for j = 1, 2, .... p 

j 
and arrive at the set of equations 

v    v' v1 
Z    ak   A    s(n-k) s(n-j) =   >    s(n) s(n-j) 
k=l        n=p n=p 

or,  in matrix notation,   * a = i|i,  where 

N-l 

j ■ 1,2, ...(P 

♦y ■   }    s(n-i) s(n-j) i ■ 0,l,..,,p 
n=p 

and 

4». ■ «b   . j = 1.2. 

This formulation is sometimes referred to as the covariance method.   The resulting 
matrix * is still symmetric but no longer Toeplitz.    In fact, 

N-l N-2 

*i+l,j+l * £   s(n-i-l) S(n-J-1) =    )       s(n-i) s(n-j) 

n=p-l n=p 

<t)i;j - s(N-l-i) s(N-l-j) + s(p-l-i) s(p-l-j). 
(10) 

The last terms in Eq.   '0 can be considered an end-effect correction. 

Both formulations have been used by researchers, hence it is appropriate to com- 

pare their efficiency.    This is shown in Table X-l.    Formulation I has the following 

advantages.    Theoretically,   the stability of the resulting filter S{ j ) is   guaranteed, 

(although this is   not  true   for   implementation  with finite word-length computation). 

Increasing p from po to po + 1 involves only one additional iteration; therefore, it is 

easy to set an error threshold to select the appropriate value of p.   On the other hand. 

Formulation II has the advantages that scaling is relatively simple for fixed-point imple- 

mentation, and the computation can be carried out in-place.    It has also been pointed 

out that the square-root method of solving the resulting set of linear   equations   is 
numerically very stable. 
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Table X-l.    Computational offlclency of Formulation» I and II. 

Matrix 
Formulation I 

Storage (data) 
matrix equation 
window 

Computation 

multiplies (windowing) 
(compute 4». ) 

(solve matrix eo'^ulon) 
divides (or inverse) 

square-roots 

Tneplitz 
(Can Be Solved by 

Levlnson's Method   ) 

N 

4p*4 

2N 

pN-p' 

2p2 + %p-6 

2p 
0 

Formulation II 
Symmetric 

(Can Be Solved by 

Square-Hoot Method8) 

N 

(p2*3p)/2 
0 

PN + P 
(pJ*9p2*2p)/6 

P 

P 

3,    Application to .Sequences Cloacly Approximuting tti«- Heaixinav 
of an AU-lJole Filter 

The linear-prediction method  is most suitable for sequences that can be closely 

approximated as the response of an all-pole filter.    Typically, the linear-predict Ion 
technique is used to determine the parameters of the« all-pole filter,  and spectral anal- 

ysis or resynthesis is carried out by using   these  parameters to generate an approx- 
imation.  s(n), to the data. 

For problem A we assumed, by virtue of Kq.  I and the fart that the data are «ero 

for n < 0,   that the input was a unit sample at n ■ 0.    Thus, lo generate s(n) from the 

parameters, we excite the all-pole filter with u unit sample.    For problem B, the auto- 
correlation method outlined in Formulation I suggests lite same procedure, since the 

product of the data and the window  is treated as in problem A.    For Formulation 11 in 
problem B, we made the assumption that for p * n < N the filter input is xero.    It is use- 

ful to consider the result of applying linear prediction to data that do correspond exactly 
to the output d an all-pole filter so that the data s(n) satisfy the relaUunship 

(n)= y «(n)       >    bks(n-k) 
k"l 

(11) 

on a specified  interval,   and  we choose to estimate s(n) by 
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(12) 

on that interval. For problem A the interval J« 1 « n < « and if q < p, s(n)"8(n), and the 

coefficients a.   will be equal to bk for 1 « k < q -ind tero for k > q. For problem B, the 
autocorrelation formulation (Formulation 1) will not in general give B(n) ■ 8(n), and the 
a.  will not equal the b.  because the infinite duration sequence corresponding to the data 

multiplii-d by thr window no longer satlsrivs the relationship of Eq.  11.    With q ^ p the 
covariance method will nlway»» give H(n) ■ s(n) over the Interval.    When p = q the ak arc 
uniquely determined and specify a system whose unit-sample response is 8(n) ■ 8(n).  For 
p > q.  if the data hatlsfy Eq.  11 for p < n < N but not for 0 < n < p. then we conjecture 
that the a.  are uniquely determined.    Moreover, the unit-sample response of the all-pole 

filter. 8(n). will equal 8(n) only if 8(n) corresponds to the unit-sample response of an 

all-pule filter.    The fact .Kt the specified data s(n) satisfy the relationship of Eq.   11 
does not require It to be the unit-sample response of an all-pole filter but only that it 
be the response to an input which is xero for p < n < N.   Now let us consider the case 
for which the data satisfy »       || for 0 < n < N: that is. all of the specifleH data including 

the initial conditions satlsly Kq.  II.    With q < p the covariance method  vill always give 

s(n) ■ s(n) over the Interval.    When p ■ q the ak are uniquely determined and  specify 
a system whone unit-sample rewponse is s(n) ■ s(n).    When p > q.  however, the (pXp) 
matrix ♦ Is of rank q. which gives a p-q parameter family of solution» for the ak.  For 

each solution vector a in the family of solution».   s(n) » 8(n). but one and only one 
of these solutions Kperifies a system whose unit-sample response is s(n) = »(n).    This 

Holution is. of course, the one for which all of the ak vanish when k > q. 
Consider the followlnß   simple   example.     Let   s(n) be exactly  the  unit-sample 

response of the filter 

scjri- 1 

Thus s(n) • a^.Jn).    Suppose s(n) is estimated by the second-order linear predictor 

7(n) ■ SjsCn-l) 4 a28(n-2). 

We choose to minimise the mean-square «-iror on the Interval |no, n^l). using  s(no-ll 

and sin -2) as starting valu n (Formulation II).  If n   > 1. then the equation ♦ a » 4i Is 

"2 a      « 
■ 

1 • 
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Clearly, the matrix •  Is singular and the general solution for a can be expressed 
as any particular solution a0 added to any linear combination of vectors spanning the 
null space of ♦.    We choose a0 = [j] which is the particular solution for which s(n) is 

the unit-sample response of the filter 

1 -o^ 

The general solution is given by 

al 

a2 [:]•{:■} 
where c is an arbitrary constant.    The solution a thus lies along the line a,, = -«*, +a 
in the a a2 plane.    To illustrate a different solution in the solution space,  suppose c = 1. 

Then a. =0,  a- = a2,  and s(n) = s(n) is generated by the filter 
1 ■ 

1 1 
Hl(/, = 777p=(l-ar-1)(l+a/-

1)' 

excited not by a unit sample, but by the sequence 

x(n) = uo(n) + auo(n-l). 

We see that the pole of H^) at ^ = -a is canceled by the zero at J?  = -c of the input 

sequence. 
That the predictor coefficients are not.  in general, u-ique is not surprising.    The 

llnear-prediction problem as formulated seeks to determine a difference equation, whose 
solution approximates a given sequence on some interval.    If this difference equation 

is associated with a linear system, we see that there is nothing  "built into" the for- 
mulation of the problem that specifies the initial conditions of the system, that is. exactly 

how the system was excited. All that is required by the present formulation of the prob- 

lem Is that the Input to the system vanish over the interval on which s(n) is being pre- 
dicted.    Hence the multiplicity of solutions may be interpreted as resulting from the 

fact that different systems with different inputs can produce identical outputs. 
In practice, we are not generally interested in applying linear prediction to a sequence 

that is exactly the output of an all-pole filter of unknown order. Thus we do not expect the 
covariance matrix to be singular (when it is singular it can be dealt with by choosing 
p = rank •).    We are interested, however,  in applying linear prediction to sequences 

which may be modeled approximately as the output of an all-pole filter.    If the sequence 
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s(n) closely approximates the output of an all-pole filter (as speech often does) the 

covariance matrix » will be ill-conditioned, that is, almost singular. Although a uniqut 

solution does exist, it appears to be very sensitive to small perturbations in the data. 

In particular,  if a small amount of noise is added to the data which,   according to the 

previous discussion, results in a family of solutions, the resulting solution may be close 

to any one of the solutions in the family, and as small perturbations are introduced into 

the data, the resulting solution may change radically.   A consequence is that if the order 

of the predictor is too large, and the data are close to the unit-sample response of an 

all-pole filter, as is often assumed to be the case in speech analysis, the unit-sample 

response of the all-pole filter specified by the linear-prediction parameters   and its 

Fourier transform, may not approximate the data very closely, although the output of 

the filter resulting from another unspecified input will. 

4.    Summary and Conclusion 

We have attempted to point out the major differences between the various formula- 

tions of the linear-prec.iclion problem and discuss a set of important issues related 

to linear prediction.   Wc^ have seen that there are generally two different methods 

of formulating this problem; one requires s(n) to be zero outside the domain of mini- 

mization, and the other does not. The autocorrelation method provides a good match to 

the spectrum, but this is by no means an indication of its superiority over the covari- 

ance method. 
The uniqueness of the linear-prediction solution is a very important issue.   Our 

experience indicates that with additive noise injected, the system does not always con- 

verge to a desirable answer.   What perceptual effect this has on speech synthesis is 

still unclear.   We hope to answer this question better after experimental speech syn- 

thesis. 
M. R.  Portnoff, V. W.  Zue. A. V. Oppenheim 
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